I OLIMPÍADA LAVRENSE DE MATEMÁTICA - 2016 NÍVEL II - 1^a FASE - Gabarito

1. Resposta: **D**

Solução: Como Emanuelle disse que Marlon estava errado, a placa de seu carro não termina em 0 e nem em 5. Assim, já sabemos que Emanulle não pode dirigir às quartas-feiras.

Como Antônio também estava errado, Emanuelle não pode dirigir às segundas-feiras. Consequentemente, concluímos que a placa do carro de Emanuelle é um número par. Logo, ela pode dirigir às quintas-feiras.

Emanuelle afirmou que todos os dígitos de sua placa são diferentes, logo ela não pode dirigir às sextas-feiras. Como a soma dos dígitos da placa é igual a 12, ela pode dirigir às terças-feiras e aos sábados.

Concluímos que Emanuelle pode dirigir nos seguintes dias da semana: terças-feiras, quintas-feiras e sábados.

2. Resposta: A

Solução: Vamos supor que Pedro comeu o bolo. Neste caso, os outros três irmãos estão falando a verdade. Mas a Thais disse que foi Mariana, então ela estaria mentindo. Como não podemos ter dois mentirosos, concluímos que não foi Pedro.

Por sua vez, vamos supor que Célio comeu o bolo. Como Thais disse que foi Mariana, ela também estaria mentindo, o que não é possível. Logo, Célio não comeu o bolo.

Agora, suponha que Thais comeu o bolo. Como Mariana disse que foi um menino, ela também estaria mentindo, o que não é possível.

Portanto, por eliminação, foi Mariana quem comeu o bolo. De fato, se Mariana está mentindo, então os demais irmãos estão falando a verdade, ou seja, de acordo com Pedro, foi uma menina, de acordo com Thais, foi Mariana, e, finalmente, de acordo com Célio, não foi ele.

3. Resposta: C

Solução: Observe que

$$44 \times 181818182 = 4 \times 11 \times 90909091 \times 2. \tag{1}$$

De acordo com o padrão fornecido, temos que

Assim, voltando à equação (1),

 $44 \times 181818182 = 4 \times 11 \times 90909091 \times 2 = 4 \times 1000000001 \times 2 = 8000000008.$

4. Resposta: A

Solução: Buscaremos, primeiramente, um ano que pertença ao século XIX e que seja um quadrado perfeito. Pensando no número 40, temos $40 \times 40 = 1600$ e considerando o 45, temos $45 \times 45 = 2025$, ou seja, o número que buscamos é o quadrado de um número que está entre 40 e 45. Vejamos: $41 \times 41 = 1681$, $42 \times 42 = 1764$ e $44 \times 44 = 1936$, que não estão no século XIX. Ou seja, a única possibilidade é x = 43 e $x^2 = 1849$. Se ele completou 43 anos em 1849, logo seu nascimento foi em 1806.

5. Resposta: **D**

Solução: Para descobrir a área do barco, devemos somar as áreas dos triângulos formados pela folha quadriculada e pela folha listrada. Na folha quadriculada, temos um triângulo cuja base é 8 cm e a altura é 6 cm. Logo,

$$A_1 = \frac{8.6}{2} = 24$$
cm².

Na folha listrada, temos um triângulo cuja base é 6 cm e a altura é 8 cm. Logo,

$$A_2 = \frac{6.8}{2} = 24$$
cm².

Somando ambas as áreas temos 48cm².

Obs: Os triângulos formados pelas folhas quadriculadas e listradas possuem áreas iguais, a diferença é que, no primeiro, a altura é igual à largura do retângulo e, no segundo, a altura é igual ao comprimento do retângulo!

6. Resposta: A

Solução: Como a caminhonete pode transportar 50 sacos de feijão ou 350 sacos de arroz, podemos deduzir que **1 saco de feijão equivale a** 7 **sacos de arroz**. Além disso, sabemos que a capacidade de peso do caminhão foi aumentada 2,5 vezes, logo é possível transportar 125 sacos de feijão. Se 37 sacos de feijão foram colocados na caminhonete, ainda há espaço para 88 sacos de feijão, o que equivale a $88 \times 7 = 616$ sacos de arroz.

7. Resposta: C

Solução: Precisamos descobrir a senha do cofre de Márcio. Já sabemos que a senha possui a letra M, o algarismo 7 e um algarismo desconhecido, mas não sabemos a posição de nenhum deles. Vamos descobrir! Começando pela letra M, há 3 posições possíveis e, após determinar a correta, restam 2 posições possíveis para o 7 e, em seguida, 1 posição possível para o algarismo

desconhecido. Assim, o número mínimo de tentativas para determinar as posições corretas é 6. No entanto, Márcio também não se lembra qual é o outro algarismo e, neste caso, há 10 opções $(0,1,2,\ldots,9)$. Portanto, o número mínimo de tentativas que Márcio precisará para abrir o cofre é 60.

8. Resposta: **B**

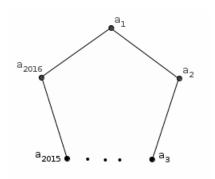
Nas soluções abaixo, o ponto caracterizado pela interseção entre as retas \overrightarrow{DB} e \overrightarrow{NM} é denominado ponto O.

Solução: As retas \overrightarrow{NM} e \overrightarrow{DC} são paralelas, logo os ângulos $C\hat{D}B$ e $M\hat{O}B$ são iguais a 45°, pois \overline{DB} é uma diagonal do quadrado. Agora, como $M\hat{O}B$ é um ângulo externo do triângulo NOB, o valor de $M\hat{O}B$ é igual a soma dos dois ângulos internos não adjacentes, ou seja, a soma dos ângulos $N\hat{B}D$ e $B\hat{N}M$ é 45°. Portanto, a resposta correta é a alternativa (b).

Solução Alternativa: O trapézio DCMO possui dois ângulos retos e um ângulo formado por uma diagonal do quadrado (segmento \overline{DB}) que mede 45°. Assim, o ângulo $M\hat{O}D$ é igual a 135°, pois a soma dos ângulos internos de um trapézio é 360°. Consequentemente, o ângulo oposto $N\hat{O}B$ também mede 135° e a soma dos ângulos $N\hat{B}D$ e $B\hat{N}M$ é 45°, pois a soma dos ângulos internos de um triângulo é 180°.

9. Resposta: C

Solução: Vamos enumerar os vértices do polígono de a_1 à a_{2016} de modo que a ordenação dos índices seja dada no sentido horário. Neste caso, para todo 1 < i < 2016 temos que a_i está entre a_{i-1} e a_{i+1} , a_1 está entre a_{2016} e a_2 , e a_{2016} está entre a_{2015} e a_1 .



Por hipótese temos que se a_i está entre a_j e a_k , então $a_i = \frac{a_j + a_k}{2}$. Neste caso, para 1 < i < 2016 temos:

$$a_i = \frac{a_{i+1} + a_{i-1}}{2} \Rightarrow 2a_i = a_{i+1} + a_{i-1} \Rightarrow a_{i+1} - a_i = a_i - a_{i-1}.$$

Segue que:

$$a_{2016} - a_{2015} = a_{2015} - a_{2014} = \dots = a_2 - a_1.$$

Ou seja, temos uma Progressão Aritmética (p.a.), que é caracterizada por uma sequência de números onde dois termos consecutivos possuem a mesma diferença. Essa diferença é chamada de razão (r). Cada termo da p.a. é definido da seguinte forma:

$$a_i = a_{i-1} + r \Rightarrow a_i = a_1 + (i-1)r.$$

No problema em questão, a sequência de vértices do polígono é uma p.a. de razão $r=a_2-a_1$. Por outro lado como a_1 está entre a_{2016} e a_2 temos:

$$a_1 = \frac{a_2 + a_{2016}}{2} \Rightarrow 2a_1 = a_1 + r + a_1 + 2015r \Rightarrow 2016r = 0 \Rightarrow r = 0.$$

Disso segue que $a_i = a_1$, para todo $1 \le i \le 2016$. E como existe um vértice que foi preenchido com o número 1, segue que $a_i = 1$, para $1 \le i \le 2016$. Assim, temos a soma dos valores de cada vértice que podemos representar com a notação de somatório, como nos exemplos abaixo.

$$\sum_{i=1}^{4} x = 1 + 2 + 3 + 4 = 10$$

$$\sum_{i=1}^{3} x^2 = 1^2 + 2^2 + 3^2 = 14$$

Logo, para o problema, temos:

$$\sum_{i=1}^{2016} a_i = \sum_{i=1}^{2016} 1 = \underbrace{1 + 1 + \dots + 1}_{2016 \ vezes} = 2016.$$

10. Resposta: **D**

Solução: De acordo com as informações da questão, os segmentos \overline{FB} e \overline{BG} medem 16 cm e, como o triângulo FBG é retângulo, podemos aplicar o Teorema de Pitágoras para descobrir a medida de \overline{FG} . Assim, $FG=16\sqrt{2}$ cm. De forma análoga, os segmentos \overline{KG} e \overline{GL} medem $8\sqrt{2}$ cm e, aplicando novamente o Teorema de Pitágoras para o triângulo retângulo KGL, descobrimos que \overline{KL} (diâmetro da circunferência inscrita no polígono) mede 16 cm. Logo, o raio da circunferência é 8 cm e sua área é $64\pi \text{cm}^2$.

Solução Alternativa 1: \overline{EH} pode ser projetado sobre \overline{DH} , como I é ponto médio de \overline{EH} , ele será projetado sobre o ponto médio de \overline{DH} que chamaremos de I' (ver figura da esquerda abaixo). Logo, temos DI' = I'H e como H é ponto médio de \overline{DC} , temos I'H = 8 cm. O segmento \overline{IH} pode ser projetado sobre \overline{IL} , gerando o segmento $\overline{IH'}$. Note que $\overline{I'H}$ e $\overline{IH'}$ possuem a mesma medida, ou seja, o raio procurado mede 8 cm.

Solução Alternativa 2: Após descobrir que $HL=8\sqrt{2}$ cm, podemos construir o triângulo retângulo HH'L (ver figura da direita abaixo). O raio procurado é $\overline{H'L}$ e para descobrir seu valor podemos considerar o ângulo $\alpha=H'HL=45^\circ$, já que \overline{HF} é diagonal do quadrado EFGH. Assim, $sen(\alpha)=H'L/HL$, ou seja, $\sqrt{2}/2=H'L/8\sqrt{2}$, portanto, H'L=8 cm.

